博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
卷积神经网络入门:LeNet5(手写体数字识别)详解
阅读量:5223 次
发布时间:2019-06-14

本文共 5313 字,大约阅读时间需要 17 分钟。

第一张图包括8层LeNet5卷积神经网络的结构图,以及其中最复杂的一层S2到C3的结构处理示意图。

在这里插入图片描述
第二张图及第三张图是用tensorflow重写LeNet5网络及其注释。
在这里插入图片描述
在这里插入图片描述

这是原始的LeNet5网络:

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport time# 声明输入图片数据,类别x = tf.placeholder('float', [None, 784])y_ = tf.placeholder('float', [None, 10])# 输入图片数据转化x_image = tf.reshape(x, [-1, 28, 28, 1])#第一层卷积层,初始化卷积核参数、偏置值,该卷积层5*5大小,一个通道,共有6个不同卷积核filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))bias1 = tf.Variable(tf.truncated_normal([6]))conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding='SAME')h_conv1 = tf.nn.sigmoid(conv1 + bias1)maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))bias2 = tf.Variable(tf.truncated_normal([16]))conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding='SAME')h_conv2 = tf.nn.sigmoid(conv2 + bias2)maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))bias3 = tf.Variable(tf.truncated_normal([120]))conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding='SAME')h_conv3 = tf.nn.sigmoid(conv3 + bias3)# 全连接层# 权值参数W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120, 80]))# 偏置值b_fc1 = tf.Variable(tf.truncated_normal([80]))# 将卷积的产出展开h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])# 神经网络计算,并添加sigmoid激活函数h_fc1 = tf.nn.sigmoid(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)# 输出层,使用softmax进行多分类W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))b_fc2 = tf.Variable(tf.truncated_normal([10]))y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)# 损失函数cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))# 使用GDO优化算法来调整参数train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)sess = tf.InteractiveSession()# 测试正确率correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))# 所有变量进行初始化sess.run(tf.initialize_all_variables())# 获取mnist数据mnist_data_set = input_data.read_data_sets('MNIST_data', one_hot=True)# 进行训练start_time = time.time()for i in range(20000):    # 获取训练数据    batch_xs, batch_ys = mnist_data_set.train.next_batch(200)    # 每迭代100个 batch,对当前训练数据进行测试,输出当前预测准确率    if i % 2 == 0:        train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})        print("step %d, training accuracy %g" % (i, train_accuracy))        # 计算间隔时间        end_time = time.time()        print('time: ', (end_time - start_time))        start_time = end_time    # 训练数据    train_step.run(feed_dict={x: batch_xs, y_: batch_ys})# 关闭会话sess.close()

下面是改进后的LeNet5网络:

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport timeimport matplotlib.pyplot as plt# 初始化单个卷积核上的权重def weight_variable(shape):    initial = tf.truncated_normal(shape, stddev=0.1)    return tf.Variable(initial)# 初始化单个卷积核上的偏置值def bias_variable(shape):    initial = tf.constant(0.1, shape=shape)    return tf.Variable(initial)# 输入特征x,用卷积核W进行卷积运算,strides为卷积核移动步长,# padding表示是否需要补齐边缘像素使输出图像大小不变def conv2d(x, W):    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')# 对x进行最大池化操作,ksize进行池化的范围,def max_pool_2x2(x):    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')sess = tf.InteractiveSession()# 声明输入图片数据,类别x = tf.placeholder('float32', [None, 784])y_ = tf.placeholder('float32', [None, 10])# 输入图片数据转化x_image = tf.reshape(x, [-1, 28, 28, 1])W_conv1 = weight_variable([5, 5, 1, 32])b_conv1 = bias_variable([32])h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)h_pool1 = max_pool_2x2(h_conv1)W_conv2 = weight_variable([5, 5, 32, 64])b_conv2 = bias_variable([64])h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)h_pool2 = max_pool_2x2(h_conv2)W_fc1 = weight_variable([7 * 7 * 64, 1024])# 偏置值b_fc1 = bias_variable([1024])# 将卷积的产出展开h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])# 神经网络计算,并添加relu激活函数h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)W_fc2 = weight_variable([1024, 128])b_fc2 = bias_variable([128])h_fc2 = tf.nn.relu(tf.matmul(h_fc1, W_fc2) + b_fc2)W_fc3 = weight_variable([128, 10])b_fc3 = bias_variable([10])y_conv = tf.nn.softmax(tf.matmul(h_fc2, W_fc3) + b_fc3)# 代价函数cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))# 使用Adam优化算法来调整参数train_step = tf.train.GradientDescentOptimizer(1e-5).minimize(cross_entropy)# 测试正确率correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float32"))# 所有变量进行初始化sess.run(tf.initialize_all_variables())# 获取mnist数据mnist_data_set = input_data.read_data_sets('MNIST_data', one_hot=True)c = []# 进行训练start_time = time.time()for i in range(1000):    # 获取训练数据    batch_xs, batch_ys = mnist_data_set.train.next_batch(200)    # 每迭代10个 batch,对当前训练数据进行测试,输出当前预测准确率    if i % 2 == 0:        train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})        c.append(train_accuracy)        print("step %d, training accuracy %g" % (i, train_accuracy))        # 计算间隔时间        end_time = time.time()        print('time: ', (end_time - start_time))        start_time = end_time    # 训练数据    train_step.run(feed_dict={x: batch_xs, y_: batch_ys})sess.close()plt.plot(c)plt.tight_layout()

转载于:https://www.cnblogs.com/chizi15/p/9808330.html

你可能感兴趣的文章
Oracle基础 数据库备份和恢复
查看>>
C#编程时应注意的性能处理
查看>>
Java集合--概述
查看>>
1-TwoSum(简单)
查看>>
css box模型content-box 和border-box
查看>>
Fragment
查看>>
比较安全的获取站点更目录
查看>>
读书笔记——乔布斯,做最好的自己,共创式教练
查看>>
ubuontu16.04安装Opencv库引发的find_package()错误信息处理及其简单使用
查看>>
用Linux远程挂载Windows上的共享文件夹.md
查看>>
洛谷 P4317 花神的数论题(组合数)
查看>>
【Python】学习笔记5-利用flask来mock接口
查看>>
vue
查看>>
MySQL存储过程和存储函数
查看>>
【bzoj 2208】[Jsoi2010]连通数(dfs||Tarjan算法+拓扑序+dp)
查看>>
iis 隐藏 banner
查看>>
leetcode[18]4Sum
查看>>
Java ThreadLocal的使用
查看>>
为什么数据库ID不能作为URL中的标识符
查看>>
Mybatis 3.3.0 Log4j配置
查看>>